3.9.68 \(\int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\) [868]

3.9.68.1 Optimal result
3.9.68.2 Mathematica [A] (verified)
3.9.68.3 Rubi [A] (verified)
3.9.68.4 Maple [B] (warning: unable to verify)
3.9.68.5 Fricas [B] (verification not implemented)
3.9.68.6 Sympy [F]
3.9.68.7 Maxima [F]
3.9.68.8 Giac [F]
3.9.68.9 Mupad [F(-1)]

3.9.68.1 Optimal result

Integrand size = 25, antiderivative size = 233 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {\arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{3/2} d}-\frac {2 b \left (a^2+2 b^2\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}} \]

output
arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^( 
1/2)*tan(d*x+c)^(1/2)/(I*a-b)^(3/2)/d-arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/ 
2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a+b)^(3/2) 
/d-2*b*(a^2+2*b^2)/a^2/(a^2+b^2)/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2) 
-2*cot(d*x+c)^(1/2)/a/d/(a+b*tan(d*x+c))^(1/2)
 
3.9.68.2 Mathematica [A] (verified)

Time = 5.74 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.98 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=-\frac {\sqrt {\cot (c+d x)} \left (\frac {\sqrt [4]{-1} a \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{(-a+i b)^{3/2}}+\frac {\frac {\sqrt [4]{-1} a^2 (a-i b) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {a+i b}}+\frac {2 \left (a \left (a^2+b^2\right )+b \left (a^2+2 b^2\right ) \tan (c+d x)\right )}{\sqrt {a+b \tan (c+d x)}}}{a \left (a^2+b^2\right )}\right )}{a d} \]

input
Integrate[Cot[c + d*x]^(3/2)/(a + b*Tan[c + d*x])^(3/2),x]
 
output
-((Sqrt[Cot[c + d*x]]*(((-1)^(1/4)*a*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqr 
t[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]])/(-a + I*b)^ 
(3/2) + (((-1)^(1/4)*a^2*(a - I*b)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[T 
an[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*b] 
+ (2*(a*(a^2 + b^2) + b*(a^2 + 2*b^2)*Tan[c + d*x]))/Sqrt[a + b*Tan[c + d* 
x]])/(a*(a^2 + b^2))))/(a*d))
 
3.9.68.3 Rubi [A] (verified)

Time = 1.30 (sec) , antiderivative size = 256, normalized size of antiderivative = 1.10, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 4729, 3042, 4052, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot (c+d x)^{3/2}}{(a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {1}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {1}{\tan (c+d x)^{3/2} (a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4052

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 \int \frac {2 b \tan ^2(c+d x)+a \tan (c+d x)+2 b}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{a}-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\int \frac {2 b \tan ^2(c+d x)+a \tan (c+d x)+2 b}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{a}-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\int \frac {2 b \tan (c+d x)^2+a \tan (c+d x)+2 b}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{a}-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {2 \int \frac {\tan (c+d x) a^3+b a^2}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a}-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\int \frac {\tan (c+d x) a^3+b a^2}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a}-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\int \frac {\tan (c+d x) a^3+b a^2}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}+\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a}-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {1}{2} a^2 (b+i a) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} a^2 (-b+i a) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {1}{2} a^2 (b+i a) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx-\frac {1}{2} a^2 (-b+i a) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}}{a}\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {a^2 (b+i a) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}-\frac {a^2 (-b+i a) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}}{a \left (a^2+b^2\right )}}{a}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {a^2 (b+i a) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}-\frac {a^2 (-b+i a) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}}{a \left (a^2+b^2\right )}}{a}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {a^2 (b+i a) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {a^2 (-b+i a) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}}{a \left (a^2+b^2\right )}}{a}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\frac {a^2 (b+i a) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {a^2 (-b+i a) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}}{a \left (a^2+b^2\right )}}{a}\right )\)

input
Int[Cot[c + d*x]^(3/2)/(a + b*Tan[c + d*x])^(3/2),x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-2/(a*d*Sqrt[Tan[c + d*x]]*Sqrt[a + 
 b*Tan[c + d*x]]) - (((a^2*(I*a + b)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d* 
x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) - (a^2*(I*a - b)*ArcTanh 
[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a + 
 b]*d))/(a*(a^2 + b^2)) + (2*b*(a^2 + 2*b^2)*Sqrt[Tan[c + d*x]])/(a*(a^2 + 
 b^2)*d*Sqrt[a + b*Tan[c + d*x]]))/a)
 

3.9.68.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4052
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c 
+ d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + Simp[1 
/((m + 1)*(a^2 + b^2)*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + 
d*Tan[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - 
 a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x], x], x] / 
; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] 
 && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || Integ 
erQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.9.68.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2764\) vs. \(2(197)=394\).

Time = 41.35 (sec) , antiderivative size = 2765, normalized size of antiderivative = 11.87

method result size
default \(\text {Expression too large to display}\) \(2765\)

input
int(cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/4/d*csc(d*x+c)*(-1/(1-cos(d*x+c))*(csc(d*x+c)*(1-cos(d*x+c))^2-sin(d*x+ 
c)))^(3/2)*(1-cos(d*x+c))*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c 
)-cot(d*x+c))-a)/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1))^(1/2)*((a^2+b^2)^(1/2) 
*(-b+(a^2+b^2)^(1/2))^(1/2)*ln(-1/(1-cos(d*x+c))*(csc(d*x+c)*a*(1-cos(d*x+ 
c))^2+2*sin(d*x+c)*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc( 
d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)-2*(a 
^2+b^2)^(1/2)*(1-cos(d*x+c))-2*b*(1-cos(d*x+c))-sin(d*x+c)*a))*(-csc(d*x+c 
)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d 
*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*a^2-(a^2+b^2)^(1/2)*(-b+(a^2+b^2)^ 
(1/2))^(1/2)*ln(1/(1-cos(d*x+c))*(-csc(d*x+c)*a*(1-cos(d*x+c))^2+2*(a^2+b^ 
2)^(1/2)*(1-cos(d*x+c))+2*sin(d*x+c)*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d 
*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2) 
^(1/2))^(1/2)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a))*(-csc(d*x+c)*(csc(d*x+c)^2 
*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*( 
b+(a^2+b^2)^(1/2))^(1/2)*a^2-2*ln(-1/(1-cos(d*x+c))*(csc(d*x+c)*a*(1-cos(d 
*x+c))^2+2*sin(d*x+c)*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(c 
sc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)-2 
*(a^2+b^2)^(1/2)*(1-cos(d*x+c))-2*b*(1-cos(d*x+c))-sin(d*x+c)*a))*a^2*b*(- 
csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a) 
*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*(-b+(a^2+b^2)^(1/2))^(...
 
3.9.68.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7665 vs. \(2 (193) = 386\).

Time = 1.40 (sec) , antiderivative size = 7665, normalized size of antiderivative = 32.90 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")
 
output
Too large to include
 
3.9.68.6 Sympy [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\cot ^{\frac {3}{2}}{\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cot(d*x+c)**(3/2)/(a+b*tan(d*x+c))**(3/2),x)
 
output
Integral(cot(c + d*x)**(3/2)/(a + b*tan(c + d*x))**(3/2), x)
 
3.9.68.7 Maxima [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {\cot \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate(cot(d*x + c)^(3/2)/(b*tan(d*x + c) + a)^(3/2), x)
 
3.9.68.8 Giac [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {\cot \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(cot(d*x + c)^(3/2)/(b*tan(d*x + c) + a)^(3/2), x)
 
3.9.68.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^{3/2}}{{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int(cot(c + d*x)^(3/2)/(a + b*tan(c + d*x))^(3/2),x)
 
output
int(cot(c + d*x)^(3/2)/(a + b*tan(c + d*x))^(3/2), x)